Math 4550 - Homework # 5 - Cyclic Groups

Part 1 - Computations

- 1. Find all the subgroups of \mathbb{Z}_8 .
- 2. Find all the subgroups of U_6 .
- 3. Suppose that $\phi: U_5 \to \mathbb{Z}_5$ is a homomorphism with $\phi(e^{2\pi i/5}) = \overline{2}$. Find all the values of ϕ and draw a picture of ϕ .
- 4. Find all homomorphisms $\phi: \mathbb{Z}_4 \to \mathbb{Z}_6$.
- 5. Find all homomorphisms $\phi: U_3 \to \mathbb{Z}_6$.
- 6. Find all homomorphisms $\phi: U_5 \to \mathbb{Z}_4$.
- 7. Find all homomorphisms $\phi: \mathbb{Z}_6 \to \mathbb{Z}_3$.
- 8. Find all homomorphisms $\phi : \mathbb{Z} \to \mathbb{Z}_3$.
- 9. Suppose that $\phi : \mathbb{Z} \to \mathbb{Z}$ is a homomorphism with $\phi(1) = 5$. Find a formula for $\phi(n)$ for all $n \in \mathbb{Z}$.

Part 2 - Proofs

- 10. Let G be a group and $x \in G$.
 - (a) Prove that $\langle x^{-1} \rangle = \langle x \rangle$.
 - (b) Prove that x and x^{-1} have the same order.
- 11. Here are some examples of infinite abelian groups that are not cyclic.
 - (a) Prove that the group of rational numbers Q under addition is not cyclic.
 - (b) Prove that the group of real numbers \mathbb{R} under addition is not cyclic.
- 12. Let $\phi_n : \mathbb{Z} \to \mathbb{Z}_n$ be given by $\phi_n(x) = \overline{x}$.
 - (a) Draw a picture of ϕ_3 .

The following are for general n:

- (b) Prove that ϕ_n is a homomorphism.
- (c) Prove that ϕ_n is onto but not one-to-one.
- (d) Prove that $\ker(\phi_n) = n\mathbb{Z}$.